skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Viers, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As next-generation scientific instruments and simulations generate ever larger datasets, there is a growing need for high-performance computing (HPC) techniques that can provide timely and accurate analysis. With artificial intelligence (AI) and hardware breakthroughs at the forefront in recent years, interest in using this technology to perform decision-making tasks with continuously evolving real-world datasets has increased. Digital twinning is one method in which virtual replicas of real-world objects are modeled, updated, and interpreted to perform such tasks. However, the interface between AI techniques, digital twins (DT), and HPC technologies has yet to be thoroughly investigated despite the natural synergies between them. This paper explores the interface between digital twins, scientific computing, and machine learning (ML) by presenting a consistent definition for the digital twin, performing a systematic analysis of the literature to build a taxonomy of ML-enhanced digital twins, and discussing case studies from various scientific domains. We identify several promising future research directions, including hybrid assimilation frameworks and physics-informed techniques for improved accuracy. Through this comprehensive analysis, we aim to highlight both the current state-of-the-art and critical paths forward in this rapidly evolving field. 
    more » « less
    Free, publicly-accessible full text available March 13, 2026